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Abstract. In this paper, we compare two strategies for constructing linear programming relaxations
for polynomial programming problems using a Reformulation-Linearization Technique (RLT). RLT
involves an automatic reformulation of the problem via the addition of certain nonlinear implied
constraints that are generated by using the products of the simple bounding restrictions (among other
products), and a subsequent linearization based on variable redefinitions. We prove that applying RLT
directly to the original polynomial program produces a bound that dominates in the sense of being
at least as tight as the value obtained when RLT is applied to the joint collection of all equivalent
quadratic problems that could be constructed by recursively defining additional variables as suggested
by Shor.
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1. Introduction

In this paper, we theoretically compare two lower bounding linear programming
relaxations for polynomial programming problems, PP, where,

PP : Minimizef�0(x) : x 2 Z \ 
g;

and where Z = fx : �r(x) > �r for r = 1; . . . ; R1, �r(x) = �r for r =
R1 + 1; . . . ; Rg, 
 = fx : 0 6 `j 6 xj 6 uj < 1, for j = 1; . . . ; ng and
�r(x) �

P
t2Tr

�rt[�j2Jrtxj ] for r = 0; 1; . . . ; R. Here, Tr is an index set for
the terms defining �r(�), and �rt are real coefficients for the polynomial terms
(�j2Jrjxj), t 2 Tr; r = 0; 1; . . . ; R. Note that we permit a repetition of indices
within each set Jrt. For example, if Jrt = f1; 2; 2; 3g, then the corresponding
polynomial term is x1x

2
2x3. In particular, let us denote N = f1; . . . ; ng, and

let � be the maximum degree of any polynomial term appearing in PP . Define
�N = fN; . . . ; Ng to be composed of � replicates of N . Then, each Jrt � �N , with

1 6 jJrtj 6 �, for t 2 Tr, r = 0; 1; . . . ; R.
Problem PP belongs to the general class of constrained global optimization

problems, for which Horst and Tuy [7] prescribe a variety of promising methods.
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382 H. D. SHERALI AND C. H. TUNCBILEK

However, we focus here on a successive quadratic variable substitution strategy
due to Shor [12] which is used to transform a given polynomial problem to an
equivalent quadratically constrained quadratic problem. By using graph theoretic
approaches, Hansen and Jaumard [4] improve Shor’s quadratic transformation
by reducing the number of additional variables. Floudas and Visweswaran [2,3],
Al-Khayyal et al. [1], and Quesada and Grossman [9] adopt similar successive
quadratic transformations to obtain an equivalent bilinearly constrained bilinear
programming problem. For this problem, various lower bounding procedures based
on generalized Benders’ techniques, or convex/concave envelopes of the bilinear
terms, along with other bound tightening strategies are proposed.

While this transformation produces a convenient quadratic representation, it is
of interest to explore what the potential loss might be in this process. We examine
this issue in light of the Reformulation-Linearization Technique (RLT) of Sherali
and Tuncbilek [11] by studying the effect on the lower bounds produced when
applying this technique directly to Problem PP, or alternatively to its equivalent
quadrified form. The outcome of this comparison is not so obvious because the
quadrification process generates additional classes of constraints to which RLT is
applied. Moreover, this quadrification can result in many alternative, equivalent
representations, and it is uncertain what might result if one were to simultaneously
incorporate all possible representations in the quadratic transformation.

More specifically, the process of applying RLT to PP begins by generating
implied constraints using distinct products of bound factors (xj � `j) > 0;
(uj � xj) > 0; j 2 N , taken � at a time. After including these constraints in
PP, the resulting problem is linearized by defining new variables, one for each
distinct polynomial term, to obtain the following linear programming problem.

LP(PP) : Minimize[�o(x)]` (1a)

subject to [�r(x)]` > �r 8r = 1; . . . ; R1;

[�r(x)]` = �r

8r = R1 + 1; . . . ; R (1b)�
�

j2J1

(xj � `j) �
j2J2

(uj � xj)

�
`

> 0

8(J1 [ J2) � �N; jJ1 [ J2j = � (1c)

where [(�)]` denotes the linearized form of the polynomial function (�) that is
obtained upon substituting a single variable for each distinct polynomial term
according to

Xj = �
j2J

xj 8J � �N: (2)

Here, the indices in J are assumed to be sequenced in nondecreasing order, and
each distinct set J produces one distinct XJ variable. Also, X

fjg � xj8j 2 N ,
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and X
;
� 1. Furthermore, note that throughout, by J1 [ J2 we will mean the joint

collection of indices appearing in J1 and J2, including repetitions. We also remark
here that additional valid product constraints can be introduced in LP(PP) in order
to tighten the relaxation. However, from the viewpoint of obtaining theoretical
convergence, the product constraints generated in (1c) are sufficient.

Denoting the optimal objective function value of any problem [�] by �[�], Sherali
and Tuncbilek [11] show that �[LP (PP )] 6 �[PP ]. An alternative linear program-
ming relaxation can be obtained by first applying Shor’s quadrification method to
PP, and subsequently, using RLT on the resulting equivalent quadratically con-
strained quadratic programming problem. In this paper, we prove that by applying
RLT directly to the original polynomial program, we derive a bound that dominates
(in the sense of being at least as tight as) the value obtained when RLT is applied
to an all encompassing quadratic problem that is constructed by simultaneously or
jointly using all possible quadrified representations of the original problem. Some
related numerical comparisons are also presented to show that this dominance can
be strict, and sometimes quite significant.

2. RLT Applied to Quadrified Polynomial Programs

First, let us present the basic transformation used for quadrifying Problem PP,
i.e., for converting it into an equivalent quadratic polynomial program. Let the
highest degree of each variable xj appearing in PP be Sj , j = 1; . . . ; n, and define
sj = dSj=2e, where d�e denotes the rounding-up operation. Consider the set

A =

�
a = (a1; . . . ; an) 2 Z

n
+

: 0 6 aj 6 sj 8j = 1; . . . ; n; and

nX
j=1

aj 6 �

�
(3)

whereZ+

n is the set of nonnegative integral n-vectors, and for each a 2 A, define a
variable R[a] to represent the monomial xa � �n

j=1x
aj
j . Our equivalent quadrified

program will be defined in terms of the variables R[a]; a 2 A.
To illustrate the quadrification process, consider the polynomial term x3

1x
2
2x

4
3.

This can be reduced to a quadratic form by including the following series of identity
relations involving the R[�] variables,

x1 � R[1; 0; 0]; x2 � R[0; 1; 0]; x3 � R[0; 0; 1];

x2
3 � R[0; 0; 2] = R[0; 0; 1]R[0; 0; 1]

x2x
2
3 � R[0; 1; 2] = R[0; 0; 2]R[0; 1; 0];

x1x2x
2
3 � R[1; 1; 2] = R[0; 1; 2]R[1; 0; 0]

x2
1x2x

2
3 � R[2; 1; 2] = R[1; 1; 2]R[1; 0; 0];

and then, replacing x3
1x

2
2x

4
3 by R[1; 1; 2]R[2; 1; 2] in the R[�] variables.
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Hence, by defining suitable variablesR[a]; a 2 A, and by including appropriate
identities involving these variables as done above, we can thereby quadrify Problem
PP. Notice that this successive quadrification scheme is not uniquely defined; for
example, instead of writing x2x

2
3 as (x2)(x

2
3) as essentially done above, we could

have as well composed x2x
2
3 = (x3)(x2x3) as follows:

x2x3 � R[0; 1; 1] = R[0; 1; 0]R[0; 0; 1];

x2x
2
3 � R[0; 1; 2] = R[0; 1; 1]R[0; 0; 1]:

In order to simultaneously capture all such transformations or quadrifying iden-
tities within an all-encompassing equivalent quadratic polynomial program, and
then to apply RLT to this quadratic program, we adopt the following stepwise
scheme.

Step 1 (Variable Definition and Quadrification of Objective and Constraint Func-
tions). For each a 2 A defined in (3), associate a variable R[a] as above, and
restrict

n
�

j=1
`
aj
j 6 R[a] 6

n
�

j=1
u
aj
j 8 such variables R[a]: (4)

Replace each polynomial term �r(x) in PP by some quadratic expression of the
form

�r(x) 
X
t2Tr

�rtR[a
t1 ]R[at2 ]; where fat1 ; at2g � A; and where

x(a
t1+at2) � �

j2Jrt
xj8t 2 Tr; r = 0; 1; . . . ; R: (5)

Step 2 (Quadrification Constraints). To establish the required inter-relationships
among the R[�] variables, include all possible quadratic identities of the following
form, where R[0; . . . ; 0] � 1.

R[a1]R[a2] = R[a3]R[a4] 8fa1; a2; a3; a4g � A such that

a1 + a2 = a3 + a4
6 S � (S1; . . . ; Sn); with

nX
j=1

(a1
j + a2

j) =
nX

j=1

(a3
j + a4

j) 6 �: (6)

Step 3 (Reformulation Phase of RLT). Construct all possible pairwise products
(including self-products) of the bound-factors defined in (4), so long as for any
quadratic term R[a1]R[a2] thus produced, we preserve the maximum degree �, i.e.,Pn

j=1(a
1
j + a2

j) 6 �.

Step 4 (Linearization Phase of RLT). Substitute a variable for each distinct product
of the type R[a1]R[a2]. However, noting the relationship (6), we can substitute in
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POLYNOMIAL PROGRAMMING PROBLEMS 385

this phase a variable W [a1 + a2] for each distinct product of the type R[a1]R[a2],
so that if a1 + a2 = a3 + a4 , the same linearizing variable would be substituted
in place of R[a1]R[a2] as would be for R[a3]R[a4]. This would hence render (6)
redundant.

The net effect of this process is that at Step 1, each distinct polynomial term of
the form �j2J xj , for some J � �N , in the objective function and the constraints
of Problem PP is replaced by a single variable W [a], where aj is the number of
times the index j appears in J . Note that by (2), this variableW [a] is precisely the
variableXJ used in LP(PP), and so, the linearization phase applied to the quadrified
objective function and constraints of PP would result in producing precisely (1a)
and (1b), respectively. In addition, using the same linearization substitution as in
(2), the bound-factor product constraints of Step 3, along with constraints (4),
would produce the following restrictions.��

n
�

j=1
x
a1
j

j �
n
�

j=1
`
a1
j

j

��
n
�

j=1
x
a2
j

j �
n
�

j=1
`
a2
j

j

��
`

> 0

and��
n
�

j=1
u
a1
j

j �
n
�

j=1
x
a1
j

j

��
n
�

j=1
u
a2
j

j �
n
�

j=1
x
a2
j

j

��
`

> 0

for all distinct unordered pairs fa1; a2g � A such that

nX
j=1

(a1
j + a2

j) 6 �; (7a)

��
n
�

j=1
x
a1
j

j �
n
�

j=1
`
a1
j

j

��
n
�

j=1
u
a2
j

j �
n
�

j=1
x
a2
j

j

��
`

> 0

for all distinct ordered pairs fa1; a2g � A such that
nX

j=1

(a1
j + a2

j) 6 �; (7b)

and

n
�

j=1
`
aj
j 6

�
n
�

j=1
x
aj
j

�
`

6
n
�

j=1
u
aj
j 8a 2 A: (7c)

Hence, the all-encompassing linear programming RLT relaxation that would result
from simultaneously considering all possible quadrification transformations and
then applying RLT to this as above, is given as follows.

LP(QPP) : Minimize f[�0(x)]` : Constraints (1b) and (7)g: (8)

REMARK 1. Note that we could have considered all possible bound factor prod-
ucts composed from (4) at Step 3, without the restriction that

Pn
j=1 (a

1
j + a2

j) 6 �
at the possible expense of increasing the degree of the polynomial terms in (7)
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to �0 > �. If this is done, then the same dominance result below holds true by
correspondingly also increasing � to �0 in (1c) of LP(PP). B

3. Dominance of LP(PP) over LP(QPP)

In the following discussion, we show that �[LP (PP )] > �[LP (QPP )]. In order
to prove this dominance result, we first show that the defined terms of the type
(�n

j=1x
aj
j � �n

j=1`
aj
j ) and (�n

j=1u
aj
j � �n

j=1x
aj
j ) as well as their products, can

each be expressed as a sum of nonnegative multiples of ordinary bound-factor
and nonnegative variable products. Hence, a linearization of products of such
compound factors can likewise be expressed as a sum of linearizations of the
latter type of ordinary nonnegative bound-factor and variable products. Then, by
showing that such latter products are themselves implied by the RLT constraints
defining LP(PP), we will establish the dominance results.

PROPOSITION 1. The terms�n
j=1(x

pj
j �`

pj
j ) and�n

j=1 (u
pj
j �x

pj
j ), where p 2 Zn

+
,Pn

j=1 pj 6 �, as well as the term�n
j=1(x

pj
j �`

pj
j )�n

j=1(u
qj
j �x

qj
j ), where p, q 2 Zn

+
,Pn

j=1 (pj+qj) 6 �, can each be written as a sum of nonnegative multiples of terms
of the type

�
j2J1

(uj � xj) �
j2J2

(xj � `j) �
j2J3

xj where (J1 [ J2 [ J3) � �N;

jJ1 [ J2 [ J3j 6 �: (9)

Proof. By the binomial expansion, we know that,

(y + a)r =

 
r

0

!
yra0 +

 
r

1

!
yr�1a1 + � � �+

 
r

r � 1

!
y1ar�1 +

 
r

r

!
y0ar:

(10)

Hence, putting a = `j ; y = (xj � `j), and r = pj , for j 2 N , in (10), we get

(x
pj
j � `

pj
j ) = (xj � `j)

pj + pj`j(xj � `j)
pj�1

+
pj(pj � 1)

2
`2
j(xj � `j)

pj�2 + � � �+ pj`
pj�1
j (xj � `j):

(11)

Similarly, putting a = xj ; y = (uj � xj); r = pj , for j 2 N in (10), we get

(u
pj
j � x

pj
j ) = (uj � xj)

pj + pjxj(uj � xj)
pj�1

+
pj(pj � 1)

2
x2
j(uj � xj)

pj�2 + � � � + pjx
pj�1
j (uj � xj):

(12)

The assertion of the lemma is now evident from (11) and (12), and this completes
the proof. B

jogo334.tex; 9/09/1997; 15:38; v.6; p.6



POLYNOMIAL PROGRAMMING PROBLEMS 387

PROPOSITION 2. For any p 2 Zn
+

such that
Pn

j=1 pj 6 �, the terms of the type
(�n

j=1 x
pj
j � �n

j=1 `
pj
j ) and (�n

j=1 u
pj
j � �n

j=1 x
pj
j ) can each be expressed as a sum

of nonnegative multiples of terms of the following form:

�
j2J1

(uj � xj) �
j2J2

(xj � `j) �
j2J3

xj

where (J1 [ J2 [ J3) � �N; jJ1 [ J2 [ J3j 6 �: (13)

Proof. First, note that (�n
j=1x

pj
j � �n

j=1 `
pj
j ) can be expressed in terms of non-

negative multiples of products of factors (x
pj
j � `

pj
j ); j = 1; . . . ; n, by inductively

applying�
n
�

j=1
x
pj
j �

n
�

j=1
`
pj
j

�
=

�
n�1
�

j=1
x
pj
j �

n�1
�

j=1
`
pj
j

�
(xpnn � `pnn )

+(xpnn � `pnn )
n�1
�

j=1
`
pj
j + `pnn

�
n�1
�

j=1
x
pj
j �

n�1
�

j=1
`
pj
j

�
:

In a similar fashion,
�
�n
j=1 u

pj
j � �n

j=1 x
pj
j

�
can be expressed in terms of non-

negative multiples of products of factors (u
pj
j � x

pj
j ) and x

pj
j , j = 1; . . . ; n, by

inductively applying�
n
�

j=1
u
pj
j �

n
�

j=1
x
pj
j

�
= upnn

�
n�1
�

j=1
u
pj
j �

n�1
�

j=1
x
pj
j

�
+ (upnn � xpnn )

n�1
�

j=1
x
pj
j :

Hence, having done this, the assertion of Proposition 2 now follows by Proposition
1. This completes the proof. B

To prove the dominance result, we need one additional intermediary step, relating
the constraints of type [(13)]` > 0 with the regular RLT constraints (1c). Let us first
define the following family of sets of constraints to identify all possible constructs
of type (13).


s;�0 �

��
�

j2J1

(uj � xj) �
j2J2

(xj � `j) �
j2J3

xj

�
`

> 0

8 distinct ordered triplets (J1; J2; J3) where

(J1 [ J2 [ J3) � �N; jJ1 [ J2 [ J3j = �0; jJ3j = s (14)

for each 0 6 s � jJ3j 6 �0 6 �. Notice that
0;� is the set of regular RLT constraints
(1c). Let us denote the feasible region defined by the constraint set 
s;�0 by �
s;�0 .

PROPOSITION 3.
(a) For any 0 6 s 6 �, �
s;�0 � �
s;�0+1 for all �0 2 fs; . . . ; � � 1g.
(b) For any �0 2 fs; s+ 1; . . . ; �g; �
s�1;�0 � �
s;�0 , for all 1 6 s 6 �.
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Proof. For any 0 6 s = jJ3j < � and �0 2 fs; . . . ; ��1g, consider the following
constraint from 
s;�0 :�

�
j2J1

(uj � xj) �
j2J2

(xj � `j) �
j2J3

xj

�
`

> 0: (15)

Surrogating the following two constraints from the set 
s;�0+1,�
(xt � `t) �

j2J1

(uj � xj) �
j2J2

(xj � `j) �
j2J3

xj

�
`

> 0

and�
(ut � xt) �

j2J1

(uj � xj) �
j2J2

(xj � `j) �
j2J3

xj

�
`

> 0 (16)

where t 2 f1; . . . ; ng, we obtain, that the sum equals (ut � `t) times (15), hence
implying (15). Therefore, we have �
s;�0 � �
s;�0+1. This proves part (a).

To prove part (b), for any 1 6 s 6 �0 6 � and t 2 f1; . . . ; ng, consider the
following constraint from 
s;�0 :�

xt �
j2J1

(uj � xj) �
j2J2

(xj � `j) �
j2J3

xj

�
`

> 0 (17)

for any jJ3j = s�1; J1 [J2[J3[ftg � �N; jJ1 [J2[J3[ftgj = �0. Notice that
(17) is well defined, since s = jJ3 [ ftgj > 1. We can obtain (17) by a particular
surrogate of the following constraint from 
s�1;�0 ,�

(xt � `t) �
j2J1

(uj � xj) �
j2J2

(xj � `j) �
j2J3

xj

�
`

> 0 (18a)

with the following constraint from 
s�1;�0
�1, where the latter constraint has been

shown to be implied by the constraints in 
s�1;�0 , in part (a) of this proposition,�
�

j2J1

(uj � xj) �
j2J2

(xj � `j) �
j2J3

xj

�
`

> 0: (18b)

Using `t > 0 as the weight for (18b), we have that (18a) + `t(18b) = (17).
Hence, each constraint in 
s;�0 , is implied by those in 
s�1;�0 , and this completes
the proof. B

THEOREM 1. �[LP (PP )] > �[LP (QPP )]:
Proof. By Proposition 2, the compound factors (�n

j=1 x
pj
j � �n

j=1 `
pj
j ) and

(�n
j=1 u

pj
j � �

n
j=1 x

pj
j ) can each be expressed as a sum of nonnegative multiples of

the terms of the form (13). Hence, so can the pairwise products of these compound
factors. Consequently, constraints (7) can be obtained as surrogates of the con-
straints from the combined set f
s;�0 ; 0 6 s 6 �0 6 �g. Since �
0;� � �
s;�0 for all
0 6 s 6 �0 6 � by Proposition 3, the RLT constraints (7) of ProblemLP (QPP ) are
all implied by those in
0;� , where the latter are the RLT constraints (1c) of Problem
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Table I. Comparison of �[LP (PP )] versus �[LP (QPP )].

Problem (n; �) Known optimal value �[LP (PP )] �[LP (QPP)]

Problem 1 (1, 3) �4.5 �4.5 �9
Problem 2 (1, 4) 0 �875 �6375.0
Problem 3 (1, 6) 7.0 �17385.0 �2,292,825.0
Problem 4 (2, 4) �5.50796 �6.750 �6.9867
Problem 5 (2, 4) �118.705 �8108.0 �54764.0
Problem 6 (2, 4) �16.7389 �28.5 �29.0

LP (PP ). Hence, from (1) and (8), we have �[LP (PP )] > �[LP (QPP )]. This
completes the proof. B

Notice that in establishing the above result, we have not assumed that the restric-
tions a1

j , a2
j 6 sj , j = 1; . . . ; n, are imposed when generating the bound-factor

products in (7). The removal of this restriction from (7) results in the generation
of additional RLT constraints to be included in LP (QPP ) upon linearization.
Therefore, the above dominance result holds even when considering this poten-
tially tighter linear programming relaxation than the all-encompassing quadrified
relaxation LP (QPP ).

4. A Computational Comparison of the Alternative Relaxations

To numerically illustrate the dominance of Theorem 1, we compare �[LP (PP )]
and �[LP (QPP )] empirically below, using some test problems from the literature.
Problems 1–4 are from Visweswaran and Floudas [13], and Problems 5 and 6 are
from Ryoo and Sahinidis [10]. All the problems are scaled so that (`; u) = (0; 1),
where `; u are the vectors of lower and upper bounds, respectively, on the variables.
Table I presents the results obtained. In particular, the dominance is quite significant
for Problems 2, 3 and 5. Also, in light of Remark 1, we have used �0 = 4 in
generating the RLT relaxations for Problem 1. However, even when we use only
the RLT constraints of order � = 3 for LP (PP ), LP (PP ) yields a lower bound
of �6, which still dominates the lower bound obtained via LP (QPP ). (This
also illustrates that the bound via LP (PP ) can be enhanced by generating RLT
constraints of order greater than �.)

To examine the consequence of strengthening the relaxation LP (QPP ) even
further beyond the intersection of all possible quadrified representations as men-
tioned after the proof of Theorem 1, we removed the restrictions a1

j ; a
2
j 6 sj ,

j = 1; . . . ; n, from (7) for Problems 2 and 5. Although the inclusion of the con-
sequent additional constraints improved the respective lower bounds to –5241.67
and –46654 for these problems, the difference from �[LP (PP )] still remains
significant.
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